STORMWATER REPORT
SUBMITTED WITH
SITE PLAN REVIEW APPLICATION
TOWN OF COHASSET PLANNING BOARD

Proposed Re-development

87 & 124 ELM STREET
Cohasset, Massachusetts

APPLICANT:
Cohasset Hospitality Partners
124 Elm Street
Cohasset, MA 02025

SUBMITTED TO:
Town of Cohasset
Planning Board
41 Highland Avenue
Cohasset, MA 02025

PREPARED BY:
Cavanaro Consulting, Inc.
687 Main Street
Norwell, MA 02061
Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Plan Review Narrative and Compliance with Stormwater Management Standards</td>
<td>I</td>
</tr>
<tr>
<td>Construction Period and Long Term Pollution Prevention and Erosion and Sedimentation Control Illicit Discharge Statement</td>
<td>II</td>
</tr>
<tr>
<td>Figures</td>
<td>III</td>
</tr>
<tr>
<td>Figure 1 – MassGIS Oliver Map</td>
<td></td>
</tr>
<tr>
<td>Figure 2 – FIRM Flood Map</td>
<td></td>
</tr>
<tr>
<td>Figure 3 – Locus Map</td>
<td></td>
</tr>
<tr>
<td>Drainage Calculations and Supplemental Drainage Information</td>
<td>IV</td>
</tr>
<tr>
<td>Locus Deed</td>
<td>V</td>
</tr>
<tr>
<td>Site Plan</td>
<td>VI</td>
</tr>
</tbody>
</table>
SECTION I

SITE PLAN REVIEW NARRATIVE
AND COMPLIANCE WITH
STORMWATER MANAGEMENT STANDARDS
The locus property is located at 87 and 124 Elm Street, Cohasset, MA. The property at 87 Elm has two structures, one is a two story mixed use, residential and commercial structure containing approximately 2,800 s.f. according to the assessor’s office. The structure in the rear is a two story residential unit with approximately 940 s.f. according to assessor’s records.

The property at 124 Elm Street is a 55 unit hotel and restaurant with approximately 32,000 gross floor area and approximately 45 surface parking spaces.

The proposed project will remove all structures on both properties and construct three structures, one at 87 Elm Street and two structures on 124 Elm Street. The structure at 87 Elm will contain 10 residential units and retail space and include 21 parking spaces in the basement and 8 surface parking spaces in the rear of the building. 124 Elm Street will contain two structures, the southerly structure will contain 6 residential units. The northerly structure will be a mixed-use structure containing residential (13 units) and retail space.

The proposed project for both properties will result in a net reduction of impervious coverage from what exists today.

Compliance with Stormwater Management Standards:

The proposed project complies with the Stormwater Management Standards as follows:

Standard 1: No New Stormwater Conveyances of Untreated Stormwater or Erosion Offsite

There will be no new untreated stormwater conveyances as part of this project.

Standard 2: Peak Rate Attenuation

Since runoff is directed to LSCSF, Cohasset Harbor, peak rate of runoff control is not critical on this site. However, there is no increase in peak rate of runoff or volume during all design storm events.

Standard 3: Recharge and Discharge Volume

Recharge is required follows:

Existing Impervious Area = 57,777 ft2

Proposed Impervious Area = 52,589 ft2

Per the Massachusetts Stormwater Handbook, B soils require 0.35” x impervious area of runoff to be recharged.

There is a net loss of impervious surfaces therefore this standard is not applicable.
Standard 4: Water Quality

The required Water Quality Volume (WQV) was calculated as follows:

Existing Paved Areas = 31,949 SF
Proposed Paved Areas = 2884 S.F.

Since the project is not in a critical area, 0.5 inch of runoff must be used over the net increase in paved areas as follows:

Since there is a net loss of paved areas for the project this standard is not applicable.

Standard 5: Land Uses with Higher Pollutant Loads (LUHPPLs)

The proposed mixed residential/commercial use does not constitute a higher potential pollutant load use. Thus, Standard 5 does not pertain to this project.

Standard 6: Critical Areas

The locus site is not located within a critical area as can be seen on the attached MassGIS Oliver map.

Standard 7: Redevelopment

The project is a redevelopment project.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

The Operation and Maintenance Plan included with this submittal will ensure proper maintenance of the proposed pollution, erosion and sedimentation measures proposed during construction.

Standard 9: Long Term Operation and Maintenance Plan

The Long Term Operation and Maintenance Plan is included within the Operation and Maintenance Plan enclosed in this submittal to ensure the proposed drainage improvements are maintained as intended.

Standard 10: Prohibition of Illicit Discharges

Routine visual inspections are scheduled as part of the Operations and Maintenance Plan to prevent illicit discharges into the stormwater system. Furthermore, an Illicit Compliance Statement is included in this submittal.

Improvement Over Existing Conditions

The proposed decrease of impervious areas and paved vehicular areas will greatly improve water quality. Moreover, peak rate of runoff will decrease during all design storm events.
SECTION II

CONSTRUCTION PERIOD AND LONG TERM POLLUTION PREVENTION AND EROSION AND SEDIMENTATION CONTROL MAINTENANCE INSPECTION LOG FORM

ILLICIT DISCHARGE STATEMENT
As part of any infrastructure improvement the system must be maintained in order to work properly. The following is an Operation and Maintenance plan to follow prior to and while construction activities are taking place.

Emergency Contact Information:

CHI, LLC
71 South Main Street
Cohasset, MA 02025
Telephone: 781-383-1234
Emergency Telephone: 781-383-1234 (24/7 emergency response)
Email:

Construction Sequencing:

The following section provides construction details and highlights the construction sequence and timing of earth moving activities.

1. **Installation of Erosion Controls**

Erosion and sedimentation controls (i.e. silt sock, construction entrance) will be installed as shown on the Site Plan and inspected at the limits of the work area prior to the commencement of earth moving activities.

2. **Clearing and demolition of existing structures**

All utilities (including stubs) must be identified and marked in the field prior to disturbance. No large boulders or building materials will be buried on the site. All cleared vegetation, with the exception of any vegetation that may be deemed appropriate to be replanted, will be removed from the project site or mulched and stockpiled for future use on the site.

3. **Removal of Existing Buildings and Pavement**

Prior to removing the any existing structures, all utilities serving the buildings to be removed shall be cut and capped per the requirements of each utility company. The existing structures, including hotel ad mixed use structures and pavement will be removed at this time and disposed of offsite.
4 Rough Grading

The site shall be rough graded at this time.

5 Building Construction

Building construction will start at this time.

6 Utility and septic System Installation

All underground utilities and underground infiltration systems will be installed at this time.

7 Pavement and final grading

The paved driveway as well as final landscaping will be installed at this time.

8 Site Stabilization

The final phase of the project is the restoration and stabilization of all exposed surfaces. Disturbed areas will be landscaped or seeded as necessary only after all other construction is final. In the event that weather conditions prevent final restoration, temporary erosion and sedimentation measures will be employed until the weather is suitable for final cleanup. A final inspection will ensure that the project site is cleared of all project debris and that erosion and sedimentation controls are functioning properly. Erosion and sedimentation controls will not be removed until the site is stabilized and the final inspection is complete.

Stormwater Operation and Maintenance During Construction:

Sediment and Erosion Control

- Silt fences shall be inspected at least once a week and after each rainfall event. Make any required repairs immediately. Repair scoured areas on the back side of fence at this time to prevent future problems.

- Should the fabric of the silt fence tear, decompose or otherwise become ineffective, replace it within 24 hours of discovery.

- Remove silt deposits once they reach 20 to 30 percent of the height of the silt fence to provide adequate storage volume for the next rain event and to reduce pressure on the fence. Care should be taken to avoid undermining the fence during cleanout process.

- Silt fences are to be removed upon stabilization of the contributing drainage area. Accumulated sediment may be spread to form a surface for turf or other vegetation establishment, or disposed of elsewhere. The area should be reshaped to permit natural drainage.

- The crushed stone construction entrance shall be inspected and maintained on a weekly basis. Any buildup of material within the apron shall be removed offsite and replaced with clean crushed stone as needed.

- Any sediment tracked from the construction entrances onto the roads during construction shall be removed immediately and the construction entrances must be adjusted as needed to prevent additional sediment tracking.
• A minimum of 50 linear feet of silt fence, straw wattles and stakes shall be kept on site at all times to maintain the installed erosion controls in good repair and provide surface cover when needed.

Dust Control

Sprinkle water as necessary to control dust during construction.

Material Stockpiling

If left overnight, material stockpiling must be protected from the weather. All stockpiles that are not used for more than 5 days shall be covered and surrounded by erosion and sediment controls.

All cleared vegetation, with the exception of vegetation to be replanted, shall be properly disposed of at an off-site location.

Good Housekeeping

The following good housekeeping BMP’s will be implemented in order to prevent pollution during construction:

• Petroleum products will be stored in tightly sealed containers which are clearly labeled.

• Any asphalt substances used onsite will be applied according to the manufacturer’s specifications.

• If portable sanitary units are used, sanitary waste will be removed as necessary to avoid overfilling.

• All paint and other hazardous waste materials will be tightly sealed and stored when not in use. Excess material will not be discharged into the public stormwater system, but will be properly disposed of according to the manufacturer’s specifications.

• If spray guns are used, they will be cleaned on a removable tarp.
Long Term Pollution Prevention Plan
Last Revised 4/13/20

Proposed Residential/Retail Re-development
87 & 124 Elm Street – Cohasset, MA 02025
Stormwater Management System’s Owner: CHI, LLC
System Owner’s Address: 71 South Main Street, Cohasset, 02025
Party responsible for Operations and Maintenance: Owner of 87 & 124 Elm Street

As part of any infrastructure improvement the system must be maintained in order to work properly. The following is an Operation and Maintenance plan to upkeep the proposed non-structural and structural best performance practices as outlined in the Massachusetts Department of Environmental Protection’s Stormwater Management Policy and in accordance with the approved design drawings. The following is an Operation and Maintenance plan to follow after construction activities have been completed.

Emergency Contact Information:

CHI, LLC
71 South Main Street
Cohasset, MA 02025
Telephone: 781-383-1234
Emergency Telephone: 781-383-1234 (24/7 emergency response)
Email:

Stormwater Operation and Maintenance After Construction:

Pipes:
All pipe cleanouts shall be inspected to ensure that they are free of all obstructions.

Roof Drain cleaning:
All roof drains shall be cleaned and inspected at least twice year, in late winter or early spring after the snow melts. Inspections should include the gutters, downspouts and all accessible piping.

Snow Management
Any snow and ice buildup on the proposed roof drains will be removed in a timely fashion. Snow plowed from the driveways or parking area will be temporarily stored in available lawn areas.

Estimated Operation and Maintenance Budget:
Maintenance cost will be approximately $1,000.00 per year.
MAINTENANCE INSPECTION LOG FORM

Construction Operations

87 & 124 Elm Street Cohasset, MA 02025

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>Inspected</th>
<th>Cleaning / Maintenance required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inspect drain outlets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Inspect wetland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Inspect for signs of drain line blockage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Inspect drainage swales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Inspect sedimentation controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Inspect pavement surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Inspect vegetation on site</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS / MAINTENANCE REQUIRED:

__

__

__

__

__

__

__

__

__

__
MAINTENANCE INSPECTION LOG FORM

Post Construction – Long Term Operation and Maintenance

87 & 124 Elm Street Cohasset, MA 02025

Contractor Date

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>Inspected</th>
<th>Cleaning / Maintenance required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inspect drain outlets</td>
<td>_______</td>
<td>____________________________</td>
</tr>
<tr>
<td>2. Inspect wetland</td>
<td>_______</td>
<td>____________________________</td>
</tr>
<tr>
<td>3. Inspect for signs of drain line blockage</td>
<td>_______</td>
<td>____________________________</td>
</tr>
<tr>
<td>4. Inspect drainage swales</td>
<td>_______</td>
<td>____________________________</td>
</tr>
<tr>
<td>5. Inspect sedimentation controls</td>
<td>_______</td>
<td>____________________________</td>
</tr>
<tr>
<td>6. Inspect pavement surface</td>
<td>_______</td>
<td>____________________________</td>
</tr>
<tr>
<td>7. Inspect vegetation on site</td>
<td>_______</td>
<td>____________________________</td>
</tr>
</tbody>
</table>

COMMENTS / MAINTENANCE REQUIRED: ________________

__
__
__
__
__
__
__
__
__
Illicit Discharges:

At no time will the owner or any other individual utilize the stormwater management system for any purpose other than its intended use. The stormwater management system as shown on the attached site plan at no time shall receive discharges other than stormwater, this includes "wastewater discharges and discharges of stormwater contaminated by contact with process wastes, raw materials, raw materials, toxic pollutants, hazardous substances, oil or grease."

[Signatures and prints]
SECTION III

FIGURES
SECTION IV

DRAINAGE CALCULATIONS & SUPPLEMENTAL DRAINAGE INFORMATION
1.0 METHODOLOGY

The adequacy of the proposed drainage structures and their ability to function properly were analyzed to minimize detrimental effects due to stormwater conditions. The impacts of storm water are mitigated through several mechanisms such as infiltration, transportation and evaporation. The remaining runoff was quantified through developed and accepted methods.

2.0 OVERVIEW

Cavanaro Consulting, Inc. (CC) has analyzed the existing conditions at the site utilizing the HydroCad Storm water modeling program. Storm rainfall, run-off curve numbers, and other site characteristics are input into the program. The results of calculations are output into tables and graphs for each area and control structure.

3.0 DESIGN STORMS

CC has computed stormwater runoff calculations for the proposed site, for 2, 10 and 100 year, 24-hour extreme storm events. The intensity of these rain events are 3.4”, 5.1” and 9.0” respectively.

4.0 DRAINAGE ANALYSIS

The following is the summary of the HydroCAD analysis:

To Rear Property Boundaries

<table>
<thead>
<tr>
<th>Storm</th>
<th>Existing Conditions (E2)</th>
<th>Post-development Conditions (P2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak flow</td>
<td>Volume</td>
</tr>
<tr>
<td>2–Year-24Hour (3.4”)</td>
<td>4.66 cfs</td>
<td>0.335 af</td>
</tr>
<tr>
<td>10–Year-24Hour (5.1”)</td>
<td>7.67 cfs</td>
<td>0.566 af</td>
</tr>
<tr>
<td>100–Year-24Hour (9.0”)</td>
<td>14.49 cfs</td>
<td>1.110 af</td>
</tr>
</tbody>
</table>
Routing Diagram for Cohasset Waterfront 4.13.20
Prepared by Cavanaro Consulting, Printed 4/13/2020
HydroCAD® 10.00-24 s/n 01769 © 2018 HydroCAD Software Solutions LLC
Time span=0.00-35.00 hrs, dt=0.01 hrs, 3501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: Exist . 87 & 124 Elm
- Runoff Area=74,473 sf 77.58% Impervious Runoff Depth=2.35"
- Tc=6.0 min CN=90 Runoff=4.66 cfs 0.335 af

Subcatchment P1: Prop. 87 & 124 Elm
- Runoff Area=74,473 sf 70.61% Impervious Runoff Depth=2.18"
- Tc=6.0 min CN=88 Runoff=4.34 cfs 0.310 af

Reach E2: Exisit - To Harbor
- Inflow=4.66 cfs 0.335 af
- Outflow=4.66 cfs 0.335 af

Reach P2: Prop. - To Harbor
- Inflow=4.34 cfs 0.310 af
- Outflow=4.34 cfs 0.310 af

Total Runoff Area = 3.419 ac Runoff Volume = 0.646 af Average Runoff Depth = 2.27"
25.90% Pervious = 0.886 ac 74.10% Impervious = 2.534 ac
Summary for Subcatchment E1: Exist . 87 & 124 Elm

Runoff = 4.66 cfs @ 12.09 hrs, Volume= 0.335 af, Depth= 2.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type III 24-hr 2 Year Event Rainfall=3.40"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 2,623</td>
<td>98</td>
<td>Roofs, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 20,810</td>
<td>98</td>
<td>Roofs, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 11,286</td>
<td>98</td>
<td>Paved parking, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 20,663</td>
<td>98</td>
<td>Paved parking, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 295</td>
<td>98</td>
<td>Walks / Walls - 87 Elm</td>
</tr>
<tr>
<td>* 2,100</td>
<td>98</td>
<td>Walks / Walls - 124 Elm</td>
</tr>
<tr>
<td>* 7,150</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 9,546</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B - 124 Elm</td>
</tr>
<tr>
<td>74,473</td>
<td>90</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>16,696</td>
<td>22.42% Pervious Area</td>
<td></td>
</tr>
<tr>
<td>57,777</td>
<td>77.58% Impervious Area</td>
<td></td>
</tr>
</tbody>
</table>

Tc	Length	Slope	Velocity	Capacity	Description
6.0 | | | | | Direct Entry, Direct |

Summary for Subcatchment P1: Prop. 87 & 124 Elm

Runoff = 4.34 cfs @ 12.09 hrs, Volume= 0.310 af, Depth= 2.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type III 24-hr 2 Year Event Rainfall=3.40"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 12,305</td>
<td>98</td>
<td>Roofs, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 20,649</td>
<td>98</td>
<td>Roofs, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 424</td>
<td>98</td>
<td>Paved parking, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 2,460</td>
<td>98</td>
<td>Paved parking, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 674</td>
<td>98</td>
<td>Walks / Walls - 87 Elm</td>
</tr>
<tr>
<td>* 16,077</td>
<td>98</td>
<td>Walks / Walls - 124 Elm</td>
</tr>
<tr>
<td>* 4,520</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 13,933</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 3,431</td>
<td>82</td>
<td>Gravel Parking, HSG B - 87 Elm</td>
</tr>
<tr>
<td>74,473</td>
<td>88</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>21,884</td>
<td>29.39% Pervious Area</td>
<td></td>
</tr>
<tr>
<td>52,589</td>
<td>70.61% Impervious Area</td>
<td></td>
</tr>
</tbody>
</table>

Tc	Length	Slope	Velocity	Capacity	Description
6.0 | | | | | Direct Entry, Direct |
Summary for Reach E2: Exisit - To Harbor

Inflow Area = 1.710 ac, 77.58% Impervious, Inflow Depth = 2.35" for 2 Year Event event
Inflow = 4.66 cfs @ 12.09 hrs, Volume= 0.335 af
Outflow = 4.66 cfs @ 12.09 hrs, Volume= 0.335 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs

Summary for Reach P2: Prop. - To Harbor

Inflow Area = 1.710 ac, 70.61% Impervious, Inflow Depth = 2.18" for 2 Year Event event
Inflow = 4.34 cfs @ 12.09 hrs, Volume= 0.310 af
Outflow = 4.34 cfs @ 12.09 hrs, Volume= 0.310 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Cohasset Waterfront 4.13.20
Prepared by Cavanaro Consulting

Type III 24-hr 10 Year Event Rainfall=5.10”
Printed 4/13/2020

HydroCAD® 10.00-24 s/n 01769 © 2018 HydroCAD Software Solutions LLC

Time span=0.00-35.00 hrs, dt=0.01 hrs, 3501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

<table>
<thead>
<tr>
<th>Subcatchment</th>
<th>Exist . 87 & 124 Elm</th>
<th>Prop. 87 & 124 Elm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runoff Area</td>
<td>74,473 sf</td>
<td>74,473 sf</td>
</tr>
<tr>
<td>Impervious</td>
<td>77.58%</td>
<td>70.61%</td>
</tr>
<tr>
<td>Runoff Depth</td>
<td>3.97”</td>
<td>3.76”</td>
</tr>
<tr>
<td>Tc=6.0 min</td>
<td>CN=90</td>
<td>Tc=6.0 min</td>
</tr>
<tr>
<td>CN=88</td>
<td>Runoff=7.67 cfs</td>
<td>Runoff=7.36 cfs</td>
</tr>
<tr>
<td></td>
<td>0.566 af</td>
<td>0.536 af</td>
</tr>
</tbody>
</table>

Reach E2: Exist - To Harbor
Inflow=7.67 cfs 0.566 af
Outflow=7.67 cfs 0.566 af

Reach P2: Prop. - To Harbor
Inflow=7.36 cfs 0.536 af
Outflow=7.36 cfs 0.536 af

Total Runoff Area = 3.419 ac
Runoff Volume = 1.102 af
Average Runoff Depth = 3.87”
25.90% Pervious = 0.886 ac
74.10% Impervious = 2.534 ac
Summary for Subcatchment E1: Exist. 87 & 124 Elm

Runoff = 7.67 cfs @ 12.09 hrs, Volume= 0.566 af, Depth= 3.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type III 24-hr 10 Year Event Rainfall=5.10"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 2,623</td>
<td>98</td>
<td>Roofs, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 20,810</td>
<td>98</td>
<td>Roofs, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 11,286</td>
<td>98</td>
<td>Paved parking, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 20,663</td>
<td>98</td>
<td>Paved parking, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 295</td>
<td>98</td>
<td>Walks / Walls - 87 Elm</td>
</tr>
<tr>
<td>* 2,100</td>
<td>98</td>
<td>Walks / Walls - 124 Elm</td>
</tr>
<tr>
<td>* 7,150</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 9,546</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B - 124 Elm</td>
</tr>
<tr>
<td></td>
<td>74,473</td>
<td>Weighted Average</td>
</tr>
<tr>
<td></td>
<td>16,696</td>
<td>22.42% Pervious Area</td>
</tr>
<tr>
<td></td>
<td>57,777</td>
<td>77.58% Impervious Area</td>
</tr>
</tbody>
</table>

Tc	Length	Slope	Velocity	Capacity	Description
6.0 | | | | | Direct Entry, Direct |

Summary for Subcatchment P1: Prop. 87 & 124 Elm

Runoff = 7.36 cfs @ 12.09 hrs, Volume= 0.536 af, Depth= 3.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type III 24-hr 10 Year Event Rainfall=5.10"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 12,305</td>
<td>98</td>
<td>Roofs, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 20,649</td>
<td>98</td>
<td>Roofs, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 424</td>
<td>98</td>
<td>Paved parking, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 2,460</td>
<td>98</td>
<td>Paved parking, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 674</td>
<td>98</td>
<td>Walks / Walls - 87 Elm</td>
</tr>
<tr>
<td>* 16,077</td>
<td>98</td>
<td>Walks / Walls - 124 Elm</td>
</tr>
<tr>
<td>* 4,520</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 13,933</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 3,431</td>
<td>82</td>
<td>Gravel Parking, HSG B - 87 Elm</td>
</tr>
<tr>
<td></td>
<td>74,473</td>
<td>Weighted Average</td>
</tr>
<tr>
<td></td>
<td>21,884</td>
<td>29.39% Pervious Area</td>
</tr>
<tr>
<td></td>
<td>52,589</td>
<td>70.61% Impervious Area</td>
</tr>
</tbody>
</table>

Tc	Length	Slope	Velocity	Capacity	Description
6.0 | | | | | Direct Entry, Direct |
Summary for Reach E2: Exit - To Harbor

Inflow Area = 1.710 ac, 77.58% Impervious, Inflow Depth = 3.97" for 10 Year Event event
Inflow = 7.67 cfs @ 12.09 hrs, Volume= 0.566 af
Outflow = 7.67 cfs @ 12.09 hrs, Volume= 0.566 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs

Summary for Reach P2: Prop. - To Harbor

Inflow Area = 1.710 ac, 70.61% Impervious, Inflow Depth = 3.76" for 10 Year Event event
Inflow = 7.36 cfs @ 12.09 hrs, Volume= 0.536 af
Outflow = 7.36 cfs @ 12.09 hrs, Volume= 0.536 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type III 24-hr 100 Year Event Rainfall=9.00”

Cohasset Waterfront 4.13.20
Prepared by Cavanaro Consulting
Printed 4/13/2020
HydroCAD® 10.00-24 s/n 01769 © 2018 HydroCAD Software Solutions LLC

Time span=0.00-35.00 hrs, dt=0.01 hrs, 3501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E1: Exist . 87 & 124 Elm
Runoff Area=74,473 sf 77.58% Impervious Runoff Depth=7.79”
Tc=6.0 min CN=90 Runoff=14.49 cfs 1.110 af

Subcatchment P1: Prop. 87 & 124 Elm
Runoff Area=74,473 sf 70.61% Impervious Runoff Depth=7.55”
Tc=6.0 min CN=88 Runoff=14.23 cfs 1.075 af

Reach E2: Exist - To Harbor
Inflow=14.49 cfs 1.110 af
Outflow=14.49 cfs 1.110 af

Reach P2: Prop. - To Harbor
Inflow=14.23 cfs 1.075 af
Outflow=14.23 cfs 1.075 af

Total Runoff Area = 3.419 ac Runoff Volume = 2.185 af Average Runoff Depth = 7.67”
25.90% Pervious = 0.886 ac 74.10% Impervious = 2.534 ac
Summary for Subcatchment E1: Exist . 87 & 124 Elm

Runoff = 14.49 cfs @ 12.08 hrs, Volume= 1.110 af, Depth= 7.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type III 24-hr 100 Year Event Rainfall=9.00"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 2,623</td>
<td>98</td>
<td>Roofs, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 20,810</td>
<td>98</td>
<td>Roofs, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 11,286</td>
<td>98</td>
<td>Paved parking, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 20,663</td>
<td>98</td>
<td>Paved parking, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 295</td>
<td>98</td>
<td>Walks / Walls - 87 Elm</td>
</tr>
<tr>
<td>* 2,100</td>
<td>98</td>
<td>Walks / Walls - 124 Elm</td>
</tr>
<tr>
<td>* 7,150</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 9,546</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B - 124 Elm</td>
</tr>
</tbody>
</table>

74,473 90 Weighted Average
16,696 22.42% Pervious Area
57,777 77.58% Impervious Area

Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, Direct

Summary for Subcatchment P1: Prop. 87 & 124 Elm

Runoff = 14.23 cfs @ 12.08 hrs, Volume= 1.075 af, Depth= 7.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-35.00 hrs, dt= 0.01 hrs
Type III 24-hr 100 Year Event Rainfall=9.00"

<table>
<thead>
<tr>
<th>Area (sf)</th>
<th>CN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 12,305</td>
<td>98</td>
<td>Roofs, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 20,649</td>
<td>98</td>
<td>Roofs, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 424</td>
<td>98</td>
<td>Paved parking, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 2,460</td>
<td>98</td>
<td>Paved parking, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 674</td>
<td>98</td>
<td>Walks / Walls - 87 Elm</td>
</tr>
<tr>
<td>* 16,077</td>
<td>98</td>
<td>Walks / Walls - 124 Elm</td>
</tr>
<tr>
<td>* 4,520</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B - 87 Elm</td>
</tr>
<tr>
<td>* 13,933</td>
<td>61</td>
<td>>75% Grass cover, Good, HSG B - 124 Elm</td>
</tr>
<tr>
<td>* 3,431</td>
<td>82</td>
<td>Gravel Parking, HSG B - 87 Elm</td>
</tr>
</tbody>
</table>

74,473 88 Weighted Average
21,884 29.39% Pervious Area
52,589 70.61% Impervious Area

Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, Direct
Summary for Reach E2: Exisit - To Harbor

Inflow Area = 1.710 ac, 77.58% Impervious, Inflow Depth = 7.79" for 100 Year Event event
Inflow = 14.49 cfs @ 12.08 hrs, Volume = 1.110 af
Outflow = 14.49 cfs @ 12.08 hrs, Volume = 1.110 af, Atten = 0%, Lag = 0.0 min

Routing by Stor-Ind+Trans method, Time Span = 0.00-35.00 hrs, dt = 0.01 hrs

Summary for Reach P2: Prop. - To Harbor

Inflow Area = 1.710 ac, 70.61% Impervious, Inflow Depth = 7.55" for 100 Year Event event
Inflow = 14.23 cfs @ 12.08 hrs, Volume = 1.075 af
Outflow = 14.23 cfs @ 12.08 hrs, Volume = 1.075 af, Atten = 0%, Lag = 0.0 min

Routing by Stor-Ind+Trans method, Time Span = 0.00-35.00 hrs, dt = 0.01 hrs
SUPPLEMENTAL
INFORMATION
MAP LEGEND

<table>
<thead>
<tr>
<th>Area of Interest (AOI)</th>
<th>Spoil Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Map Unit Polygons</td>
<td>Stony Spot</td>
</tr>
<tr>
<td>Soil Map Unit Lines</td>
<td>Very Stony Spot</td>
</tr>
<tr>
<td>Soil Map Unit Points</td>
<td>Wet Spot</td>
</tr>
<tr>
<td>Special Point Features</td>
<td>Other</td>
</tr>
</tbody>
</table>

Map Information

The soil surveys that comprise your AOI were mapped at 1:25,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service
Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts
Survey Area Data: Version 15, Sep 12, 2019

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 31, 2019—Sep 1, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Map Unit Legend

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Water</td>
<td>4.7</td>
<td>8.1%</td>
</tr>
<tr>
<td>51</td>
<td>Swansea muck, 0 to 1 percent slopes</td>
<td>0.1</td>
<td>0.2%</td>
</tr>
<tr>
<td>65</td>
<td>Ipswich mucky peat, 0 to 2 percent slopes, very frequently flooded</td>
<td>8.1</td>
<td>14.0%</td>
</tr>
<tr>
<td>103C</td>
<td>Charlton-Hollis-Rock outcrop complex, 8 to 15 percent slopes</td>
<td>5.2</td>
<td>8.9%</td>
</tr>
<tr>
<td>104C</td>
<td>Hollis-Rock outcrop-Charlton complex, 0 to 15 percent slopes</td>
<td>10.8</td>
<td>18.7%</td>
</tr>
<tr>
<td>105D</td>
<td>Rock outcrop-Hollis complex, 3 to 25 percent slopes</td>
<td>7.7</td>
<td>13.2%</td>
</tr>
<tr>
<td>223B</td>
<td>Scio very fine sandy loam, 2 to 5 percent slopes</td>
<td>1.5</td>
<td>2.6%</td>
</tr>
<tr>
<td>628B</td>
<td>Merrimac-Urban land complex, 0 to 8 percent slopes</td>
<td>8.5</td>
<td>14.7%</td>
</tr>
<tr>
<td>655</td>
<td>Udorthents, wet substratum</td>
<td>11.3</td>
<td>19.5%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>57.9</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Norfolk and Suffolk Counties, Massachusetts

103C—Charlton-Hollis-Rock outcrop complex, 8 to 15 percent slopes

Map Unit Setting
National map unit symbol: 2wzp1
Elevation: 0 to 1,390 feet
Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F
Frost-free period: 140 to 240 days
Farmland classification: Not prime farmland

Map Unit Composition
Charlton, extremely stony, and similar soils: 50 percent
Hollis, extremely stony, and similar soils: 20 percent
Rock outcrop: 10 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Charlton, Extremely Stony

Setting
Landform: Hills, ridges
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Linear, convex
Across-slope shape: Convex
Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or schist

Typical profile
Oe - 0 to 2 inches: moderately decomposed plant material
A - 2 to 4 inches: fine sandy loam
Bw - 4 to 27 inches: gravelly fine sandy loam
C - 27 to 65 inches: gravelly fine sandy loam

Properties and qualities
Slope: 8 to 15 percent
Percent of area covered with surface fragments: 9.0 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat):
 Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Moderate (about 8.7 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7s
Hydrologic Soil Group: B
Hydric soil rating: No

Description of Hollis, Extremely Stony
Setting
Landform: Hills, ridges
Landform position (two-dimensional): Backslope, shoulder, summit
Landform position (three-dimensional): Crest, side slope, nose slope
Down-slope shape: Convex
Across-slope shape: Linear, convex
Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or schist

Typical profile
Oi - 0 to 2 inches: slightly decomposed plant material
A - 2 to 7 inches: gravelly fine sandy loam
Bw - 7 to 16 inches: gravelly fine sandy loam
2R - 16 to 26 inches: bedrock

Properties and qualities
Slope: 8 to 15 percent
Percent of area covered with surface fragments: 9.0 percent
Depth to restrictive feature: 8 to 23 inches to lithic bedrock
Natural drainage class: Somewhat excessively drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Very low (about 2.7 inches)

Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7s
Hydrologic Soil Group: D
Hydric soil rating: No

Description of Rock Outcrop
Setting
Landform: Hills, ridges
Parent material: Igneous and metamorphic rock

Typical profile
R - 0 to 79 inches: bedrock
Properties and qualities
Slope: 8 to 15 percent
Depth to restrictive feature: 0 inches to lithic bedrock
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Available water storage in profile: Very low (about 0.0 inches)

Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 8
Hydrologic Soil Group: D
Hydric soil rating: No

Minor Components
Woodbridge, extremely stony
Percent of map unit: 8 percent
Landform: Hills, drumlins, ground moraines
Landform position (two-dimensional): Backslope, footslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Linear
Hydric soil rating: No

Chatfield, extremely stony
Percent of map unit: 5 percent
Landform: Hills, ridges
Landform position (two-dimensional): Summit, backslope, shoulder
Landform position (three-dimensional): Crest, side slope, nose slope
Down-slope shape: Convex
Across-slope shape: Linear, convex
Hydric soil rating: No

Canton, extremely stony
Percent of map unit: 5 percent
Landform: Ridges, hills, moraines
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex, linear
Across-slope shape: Convex
Hydric soil rating: No

Ridgebury, extremely stony
Percent of map unit: 2 percent
Landform: Drainageways, hills, ground moraines, drumlins, depressions
Landform position (two-dimensional): Toeslope, footslope
Landform position (three-dimensional): Base slope, head slope
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts
Survey Area Data: Version 15, Sep 12, 2019
Norfolk and Suffolk Counties, Massachusetts

626B—Merrimac-Urban land complex, 0 to 8 percent slopes

Map Unit Setting
- **National map unit symbol:** 2tyr9
- **Elevation:** 0 to 820 feet
- **Mean annual precipitation:** 36 to 71 inches
- **Mean annual air temperature:** 39 to 55 degrees F
- **Frost-free period:** 140 to 250 days
- **Farmland classification:** Not prime farmland

Map Unit Composition
- **Merrimac and similar soils:** 45 percent
- **Urban land:** 40 percent
- **Minor components:** 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Merrimac

Setting
- **Landform:** Outwash terraces, moraines, outwash plains, kames, eskers
- **Landform position (two-dimensional):** Backslope, footslope, summit, shoulder
- **Landform position (three-dimensional):** Side slope, crest, riser, tread
- **Down-slope shape:** Convex
- **Across-slope shape:** Convex

Parent material: Loamy glaciofluvial deposits derived from granite, schist, and gneiss over sandy and gravelly glaciofluvial deposits derived from granite, schist, and gneiss

Typical profile
- **Ap - 0 to 10 inches:** fine sandy loam
- **Bw1 - 10 to 22 inches:** fine sandy loam
- **Bw2 - 22 to 26 inches:** stratified gravel to gravelly loamy sand
- **2C - 26 to 65 inches:** stratified gravel to very gravelly sand

Properties and qualities
- **Slope:** 0 to 8 percent
- **Depth to restrictive feature:** More than 80 inches
- **Natural drainage class:** Somewhat excessively drained
- **Runoff class:** Very low
- **Capacity of the most limiting layer to transmit water (Ksat):** Moderately high to very high (1.42 to 99.90 in/hr)
- **Depth to water table:** More than 80 inches
- **Frequency of flooding:** None
- **Frequency of ponding:** None
- **Calcium carbonate, maximum in profile:** 2 percent
- **Salinity, maximum in profile:** Nonsaline (0.0 to 1.4 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Low (about 4.6 inches)

Interpretive groups
- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: A
- Hydric soil rating: No

Description of Urban Land

Typical profile
- M - 0 to 10 inches: cemented material

Properties and qualities
- Slope: 0 to 8 percent
- Depth to restrictive feature: 0 inches to manufactured layer
- Runoff class: Very high
- Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
- Available water storage in profile: Very low (about 0.0 inches)

Interpretive groups
- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 8
- Hydrologic Soil Group: D
- Hydric soil rating: Unranked

Minor Components

Sudbury
- Percent of map unit: 5 percent
- Landform: Deltas, outwash plains, terraces
- Landform position (two-dimensional): Footslope
- Landform position (three-dimensional): Tread, dip
- Down-slope shape: Concave
- Across-slope shape: Linear
- Hydric soil rating: No

Hinckley
- Percent of map unit: 5 percent
- Landform: Kames, eskers, deltas, outwash plains
- Landform position (two-dimensional): Summit, shoulder, backslope
- Landform position (three-dimensional): Nose slope, head slope, side slope, crest, rise
- Down-slope shape: Convex
- Across-slope shape: Convex, linear
- Hydric soil rating: No

Windsor
- Percent of map unit: 5 percent
- Landform: Deltas, outwash terraces, outwash plains, dunes
- Landform position (three-dimensional): Riser, tread
- Down-slope shape: Linear, convex
- Across-slope shape: Linear, convex
Hydric soil rating: No

Data Source Information

Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts
Survey Area Data: Version 15, Sep 12, 2019
Norfolk and Suffolk Counties, Massachusetts

655—Udorthents, wet substratum

Map Unit Setting
National map unit symbol: vkyd
Mean annual precipitation: 45 to 54 inches
Mean annual air temperature: 43 to 54 degrees F
Frost-free period: 145 to 240 days
Farmland classification: Not prime farmland

Map Unit Composition
Udorthents and similar soils: 95 percent
Minor components: 5 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udorthents

Setting
Landform position (two-dimensional): Shoulder, footslope
Landform position (three-dimensional): Riser, tread
Down-slope shape: Convex, linear
Across-slope shape: Convex, linear
Parent material: Excavated and filled sandy and gravelly human transported material over highly-decomposed herbaceous organic material

Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None

Minor Components

Urban land
Percent of map unit: 3 percent
Hydric soil rating: Unranked

Ipswich
Percent of map unit: 2 percent
Landform: Marshes
Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts
Survey Area Data: Version 15, Sep 12, 2019
SECTION V

LOCUS DEED
EASEMENT STATEMENT
DEED

Cohasset Harbor Associates, LP, a Delaware Limited Partnership with a principal address of 49 Margin Street, Cohasset, MA 02025,

for consideration of $6,950,000.00 (Six Million Nine Hundred Fifty Thousand DOLLARS)

grants to CHI, LLC, a Massachusetts Limited Liability Company with a principal address of 71 South Main Street, Cohasset, Massachusetts 02025,

with quitclaim covenants

Parcel 1 (124 Elm Street)

A parcel of land located in Cohasset, Norfolk County, Massachusetts bounded and described as follows:

SOUTHWESTERLY: by Elm Street, eighty-seven and 82/100 (87.82) feet;
NORTHERLY: by land now or formerly of Herbert A. Tilden, one hundred twenty-five and 45/100 (125.45) feet;
WESTERLY: by land now or formerly of said Herbert A. Tilden and by Lot D4, as indicated on plan filed with Certificate No. 9172, forty and 33/100 (40.33) feet;
NORTHERLY: by said Lot D4 and by Lot C as indicated on said plan, fifty-six and 36/100 (56.36) feet;
WESTERLY: by said Lot C, seven and 26/100 (7.26) feet;
NORTHERLY: by said Lot C, seventy and 96/100 (70.96) feet; then the boundary line runs in a general easterly direction according to low water in Cohasset Harbor or so far as the line of private ownership may extend.
EASTERLY: by said Cohasset Harbor, eighty-nine and 18/100 (89.18) feet;
SOUTHERLY: by a line running in a general easterly direction according to law from the outlet of a creek, as shown on plan filed with Certificate No. 1029 to low water in said Harbor or so far as the line of private ownership may extend; then

Smith Duggan Buell & Rufo LLP
99 Summer Street
Boston, MA 02110
BOUNDING SOUTHERLY twenty-four and 62/100 (24.62) feet;
SOUTHEASTERLY: thirty-one and 29/100 (31.29) feet;
SOUTHERLY: seventy-one (71) feet; COPY
SOUTHEASTERLY: thirty-four and 40/100 (34.40) feet;
SOUTHERLY: eight and 43/100 (8.43) feet by the middle line of said
Creek;
WESTERLY: fifty-nine and 08/100 (59.08) feet; and
SOUTHEASTERLY: forty-four and 30/100 (44.30) feet, by land now or formerly
of Town of Cohasset.

Said parcel is shown as LOTS A and B on plan filed with Certificate No. 9172. All of
said boundaries, except low water line, are determined by the Land Court to be located as
shown on a plan drawn by Walter B. Foster, C.E., dated Nov. 1925, as approved by said
Court filed in the Land Reg. Office as No. 2830B, a copy of a portion of which is filed
with Norfolk Registry District with Certificate No. 9172, Vol. 46.
For Title see Certificate of Title No. 113287.

Also, another certain parcel of land situate in said COHASSET, bound described as
follows:

WESTERLY: by the Easterly line of Elm Street, fifty seven and 36/100
(57.36) feet;
SOUTHERLY: by the end of said Elm Street, eleven and 21/100 (11.21)
feet;
NORTHWESTERLY: by a passageway, fifty one and 43/100 (51.43) feet;
NORTHERLY: one hundred seventy five and 40/100 (175.40) feet, and
NORTHWESTERLY: one hundred seventy three and 49/100 (173.49) feet, by
Margin Street;
NORTHEASTERLY: by land and flats now or formerly of Thomas Spear twenty
and 58/100 (20.58) feet;
EASTERLY: by Cohasset Harbor;
SOUTHERLY: by flats now or formerly of Charles S. Bates;
SOUTHEASTERLY: by said flats now or formerly of said Charles S. Bates,
seven and 26/100 (7.26) feet;
SOUTHWESTERLY: by lands now or formerly of said Charles S. Bates and of
Jonathan Bates et al, fifty six and 36/100 (56.36) feet;
SOUTHEASTERLY: forty and 32/100 (40.32) feet, and
SOUTHWESTERLY: fifteen and 42/100 (15.42) feet, by land now or formerly of
said Jonathan Bates et al;
NORTHWESTERLY: by land now or formerly of Mary F. Cousess et al, eleven
and 53/100 (11.53) feet; and
SOUTHWESTERLY: thirty two and 15/100 (32.15) feet, and
SOUTHEASTERLY: eighty seven and 77/100 (87.77) feet, by land now or
formerly of Herbert A. Tilden, being the Northerly line of
Way 12 feet wide.
Said parcel comprises LOT C on a plan drawn by Ernest W. Branch, C.E., dated Oct. 10, 1919, as approved by the Land Court, filed in the Land Registration Office as No. 333D, a copy of a portion of which is filed in Norfolk Registry District with Certificate No. 5028, Vol. 26; lots D1 to D4 both inclusive on a plan drawn by Walter B. Foster, Civil Engineer, dated Jan. 1925, as approved by said Court, filed in the Land Registration Office as No. 333E, a copy of a portion of which is filed in Norfolk Registry District with Certificate No. 8523, Vol. 43; and a parcel of land on a plan drawn by Lewis W. Perkins, Surveyor, dated September 17, 1946 and September 12, 1966, as modified and approved by said Court, filed in the Land Registration Office as No. 20120A, a copy of a portion of which is filed in Norfolk Registry District with Certificate No. 82477, Vol. 413.

There is appurtenant to said parcel shown on plan filed with Certificate No. 82477, a right of way (12 feet wide) over the Way, shown on said plan filed with Certificate No. 82477, to and from Elm Street, in common with all those lawfully entitled thereto, as set forth in an Indenture by and between Charles S. Bates and Herbert A. Tilden, dated June 11, 1904, duly recorded in Book 975, Page 334.

Said LOTS A, B, and C are subject to any and all public rights legally existing in and over the same below mean high water mark.

Said LOT C is subject also to the reservations set forth in Doc. No. 11310, concerning construction of sewer, etc.

Said lots D1, D2 and D3 are subject to and have the benefit of the rights and reservation set forth in Document Nos. 11310 and 21341, so far as now in force and applicable.

Said LOT D4 is subject to rights of drainage as set forth in said Doc. No. 21341.

Said parcel is shown on said plan filed with Certificate No. 82477 is subject to the drainage easement set forth in a grant made by Lura M. Tilden to Edith Kimball Ormo, dated September 26, 1925, duly recorded in Book 1665, Page 103. For Title see Certificate of Title No. 113287.

Parcel 2 (87 Elm Street)

Also a certain parcel of unregistered land, with the building thereon, if any, situated in said Cohasset, being known and numbered as 87 Elm Street, and bounded and described as follows:

Beginning at a point in the westerly line of Elm Street (formerly Border Street), at the easterly corner of land now or formerly of Manuel S. Leonard, Jr.;
then running southeasterly on line with Elm Street, one hundred twenty-three and 4/10 (123.4) feet;
thence on line with and now or formerly of Edwin F. Souther, southeasterly forty-two and 5/10 (42.5) feet and southeasterly fifty-two and 8/10 (52.8) feet, to land now or formerly of James Seeley; thence southwesterly fifty-nine and 7/10 (59.7) feet more or less, to the brook called James River;
thence with said brook westerly one hundred seven (107) feet, more or less, to land of said Leonard; thence northeasterly on line with said Leonard's land two hundred fourteen and 5/10 (214.5) feet, more or less, to Elm Street and the point of beginning; containing 17,856 square feet of land, more of less.

Being the same premises conveyed to the testator by deed of John L. Tanger, Executor under the Will of Carlos A. Tanger, dated May 16, 1955, recorded with Norfolk Deeds in Book 3367, Page 551, and subject to the drainage easement referred to therein.

Parcel 3 (124 off Elm Street)

Also a certain passageway consisting of unregistered land in said Cohasset extending easterly from Elm Street, bounded and described as follows:

WESTERLY: by Elm Street, as shown on Land Court Plan No. 2830B filed in Reg. Book 46 at Page 172, 11.26 feet;

NORTHERLY: by land of John G. Carzis shown as Lots D1 and D3 on Land Court Plan 333E filed in Reg. Book 43 with Cert. of Title No. 8523, by four bounds together measuring 119.92 feet;

EASTERLY: by land of said Carzis shown on said Land Court Plan No. 20120A filed in Reg. Book 413 at Page 177, 11.53 feet; and

SOUTHERLY: by land of said Carzis shown on said Land Court Plan No. 2830B, by three bounds together measuring 110.03 feet.

Said land is subject to a right of way over it to and from Elm Street as set forth in a deed from Lura M. Tilden to Edith Kimball Ormo dated Sept. 26, 1925, and recorded with Norfolk Deeds, Book 1665, Page 103, and registered with Norfolk Registry District as Doc. No. 21341.

For title of unregistered parcels, see Deed dated August 8, 1981 and recorded in Norfolk County Registry of Deeds in Book 5910, Page 150.

This conveyance is subject to and with the benefit of any and all rights, restrictions, and easement of record, if any there be, insofar as now in force and applicable.

Property address: 87 & 124 Elm Street, Cohasset, MA 02025

The Grantor is not classified for the current taxable year as a corporation for federal income tax purposes.
Witness our hands and seals this 15th day of August, 2016, before me, the undersigned notary public, personally appeared Peter A. Roy, proved to me through satisfactory evidence of identification, which was a Massachusetts Drivers License, to be the person whose name is signed on the preceding document, and acknowledged to me that he signed it voluntarily for its stated purpose, and as the free act and deed of Cohasset Harbor Associates, LP and Cohasset Harbor Management, LLC.

Notary Public
Commonwealth of Massachusetts
My Commission Expires:

SEAL
Easement Statement

There are a number of right or ways and easements affecting the property.
SECTION VI

SITE PLAN
See Attached
PROPOSED 87 ELM STREET (21,354 SF)
ROOFS: 12,305 SF
PAVEMENT: 424 SF
OTHER IMPERVIOUS: 674 SF
LAWN/LANDSCAPE: 2878 + 1842 = 4,520 SF
GRAVEL=3,431 SF

PROPOSED 124 ELM STREET (53,119 SF)
ROOFS: 6538+14111=20,849 SF
PAVEMENT: 562 + 1516 + 360 = 2,438 SF
OTHER IMPERVIOUS: 16,077 SF
LAWN/LANDSCAPE: 798+1556+2729+1596+56+1619+265+84+317+134+36+586+246+92+166+127+72+1559+1895 = 13,933 SF